
PHYSICAL REVIEW E OCTOBER 1999VOLUME 60, NUMBER 4
Forces between like-charged plates in electrolyte solution: Ion-solvent packing versus
electrostatic effects

Frank Otto and G. N. Patey
Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

~Received 12 February 1999!

The anisotropic hypernetted-chain approximation is solved numerically for mixtures of neutral hard-sphere
solvent particles and divalent counterions between charged plates. A detailed analysis of the different compo-
nents of force acting between the plates is given. At separations of a few solvent diameters, it is shown that
even at relatively high surface charge and moderate solvent density, the ionic contribution to the force tends to
be dominated by the hard-core or packing component. If the ions and solvent particles are of equal size, then
the net pressure between the plates can be reasonably well approximated by adding the pressures of pure
one-component ionic and solvent systems. However, if the ion and solvent diameters are significantly different
the pressure curve is more complex, and the simple superposition of the ionic and solvent pressures no longer
works. For this case, we show that to a good approximation it is still possible to divide the pressure into
electrostatic and hard-core components, but now the appropriate hard-core system must itself be a mixture of
neutral hard spheres.@S1063-651X~99!08210-0#

PACS number~s!: 68.45.2v, 61.20.Gy, 61.20.Qq, 82.45.1z
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I. INTRODUCTION

The average force acting between like-charged macro
ticles in electrolyte solutions plays a fundamental role
determining the behavior of colloidal systems. These for
depend on details of the interacting double layers and so
times the results can be rather unexpected. For example,
now well established@1,2# that like-charged plates immerse
in a primitive model~PM! ~i.e., continuum solvent! solution
with divalent counterions can experience an attractive in
action at short range, contrary to the predictions of the c
sical Poisson-Boltzmann theory. This is a very interest
observation, however, in real electrolyte solutions solv
effects not included in the PM might be important and m
even dominate the electrostatic contribution at smaller w
wall separations. This is an important question which
serves further attention and some aspects of discrete so
effects are addressed in this paper.

While it is now possible@3# to examine bulk electrolyte
solutions using quite realistic solvent models and reason
accurate theories, the same level of treatment is not yet
sible for inhomogeneous systems. Therefore, investigat
of two interacting double layers have usually employed
PM, where the ions are represented by charged hard sph
and the solvent is a dielectric continuum without any inh
ent granularity. We would expect discrete solvent effects
alter the PM results through at least two mechanisms. Th
are particle packing constraints and the relative lack of
electric screening at small ion-ion and ion-wall separatio
The latter effect comes about as the description of the sol
as a continuum with a distance independent dielectric c
stant begins to break down; for example, in an ‘‘associate
pair the ion-ion interaction is much stronger than the P
would imply. It might be possible to include the reduc
dielectric screening effects by employing McMillan-May
level theory with effective ion-ion and ion-wall interaction
@4#. However, in the present paper we focus upon solv
PRE 601063-651X/99/60~4!/4416~7!/$15.00
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granularity and its effects on the ion distributions and on
force between immersed charged walls. It has been propo
@5,6# that the net pressure between plates in an ion-solv
mixture might be given, at least approximately, by the sup
position of separate ion and solvent contributions obtain
from simpler one-component models. An important object
of the present work is to examine the validity of this appe
ing suggestion.

Some related earlier work has been reported by Davis
co-workers@7–9# and by Patra and Ghosh@10#. These au-
thors considered ions in hard-sphere solvents using the m
ods of density functional theory. They found that at hi
density the pressure between plates exhibited an oscilla
structure due to the hard-core interactions. In the pres
paper we consider similar models but employ anisotro
integral equation techniques which are known to be qu
accurate for inhomogeneous systems. However, our m
purpose is not to compare results obtained by different t
oretical methods, but rather to complement the earlier fi
ings with a detailed analysis of the fluid structure and, p
ticularly, of the net pressure in terms of its component pa
Cases where the ions and solvent particles are of equal
unequal size are discussed.

The remainder of the paper consists of three parts.
model and methods are described in Sec. II, the results
presented in Sec. III, and our conclusions are summarize
Sec. IV.

II. THE MODEL AND NUMERICAL METHOD

The system considered consists of two infinite para
hard walls at a separationdwall which are homogeneousl
charged with a surface charge densitys520.267 C/m2

51e/60 Å2. The fluid between the walls is a mixture o
hard-sphere counterions and neutral hard-sphere solvent
ticles. The diameters of the ions and solvent particles aredion
anddhs, respectively. Two particles at a distanceR interact
via the pair potential
4416 © 1999 The American Physical Society
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ui j ~R!5ui j
hs~R!1ui j

el~R!5H ` if R,
1

2
~di1dj !

qi qj

4pe0eR
otherwise,

~2.1!

wheree is the dielectric constant,e0 is the vacuum permit-
tivity, and qi denotes the charge associated with particlei.

We employ the reference frame shown in Fig. 1 w
coordinatesz and r 5Ax21y2, where z50 designates the
midplane between the walls. The planes of closest appro
to the walls for particle typei are defined byz56zmax,i ,
zmax,i5(dwall2di)/2. To obtain the particle density profile
r i(z) and particle distribution functionsgi j (r 12,z1 ,z2), we
employ the formalism of anisotropic integral equatio
which has been extensively used by Kjellander and
workers@1,5,11–16# among others. The theory and meth
of numerical solution are well established and we restrict
discussion to a short outline.

The Ornstein-Zernike equation relates the direct corre
tion function ci j (r 12,z1 ,z2) to the pair correlation function
hi j (r 12,z1 ,z2)5gi j (r 12,z1 ,z2)21 andr i(z) such that

hi j ~r 12,z1 ,z2!5ci j ~r 12,z1 ,z2!12p(
k
E r 3dr3dz3

3cik~r 13,z1 ,z3!rk~z3!hk j~r 32,z3 ,z2!.

~2.2!

A convenient closure for Eq.~2.2! is the hypernetted-chain
~HNC! approximation

hi j ~r 12,z1 ,z2!5exp@2bui j ~R12!1hi j ~r 12,z1 ,z2!

2ci j ~r 12,z1 ,z2!#21, ~2.3!

where R125Ar 12
2 1(z12z2)2 and b5(kBT)21. This yields

excellent results for systems that are dominated by Coul
bic interactions at low to medium densities@2#. On the other
hand, it is well known that the HNC approximation does n
perform comparatively well for dense homogeneous liqu
with short-range pair potentials, and this holds true for
inhomogeneous case as well. However, this limitation in
treatment of the hard-core interactions does not seriously
fect our conclusions as much of the discussion is qualita
in nature, and all quantitative comparisons are made betw
systems involving the same level of approximation.

The HNC approximation is advantageous since it yie
an easy way to calculate the density profiles once the ac
tiesai for the solution between the walls are known. One h

FIG. 1. The frame of reference used in the calculations.
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r i~z1!5ai expS 2bv i~z1!1 1
2 @hii ~0,z1 ,z1!2cii ~0,z1 ,z1!#

22p(
j
E r 12dr12dz2 r j~z2! @ 1

2 hi j
2 ~r 12,z1 ,z2!

2ci j ~r 12,z1 ,z2!# D , ~2.4!

wherev i(z) is the particle-wall potential energy withv i(z)
5`, if uzu. 1

2 (dwall2di). The average ion density is dictate
by the electroneutrality condition between the plates,s
1qion *r ion(z)dz50, and no electrolyte solution outside th
cavity is taken into account. The advantage of this proced
lies in the restriction to a two-component mixture which
much easier to treat than the full three-component mo
While this simplified model clearly involves some level
physical approximation, it provides a reasonable descrip
of the situation for highly charged plates immersed in dilu
electrolyte solution@2#.

The system of equations is solved self-consistently by fi
iterating Eqs~2.2! and~2.3! for an initial set of density pro-
files until successive iterations of the correlation functions
not differ more than 0.1%. Obtaining the newr i(z) from Eq.
~2.4!, the loop is repeated until successive density profi
change less than 0.01%. Following Kjellander@14#, we note
that by using a two-dimensional Fourier transform~Hankel
transform! for the correlation functions in each layer~see
below! the three-dimensional integral in Eq.~2.2! can be
transformed into a one-dimensional integral which is mu
easier to solve. Thus, we have to perform two transform
tions in every iteration loop for which no ‘‘fast-Fourier
transform-~FFT-! like’’ algorithm is known @17#. Also, due
to the discontinuity ofci j (r 12,z1 ,z2) and hi j (r 12,z1 ,z2) at
hard-core contact, the Fourier transforms have long-ra
tails which can be avoided by adding an appropriate sec
order polynomial to the function inr space and subtractin
the corresponding analytically known tail in Fourier spa
@14#.

For all particle types the space between the plates is
titioned into up to 81 parallel layers of which the wall laye
are particularly thin. Parallel to the wall we use 30
grid points with a cutoff, r max57dhs, beyond which
we set hi j (r 12,z1 ,z2)50 and ci j (r 12,z1 ,z2)5

2bui j
el(Ar 12

2 1(z12z2)2), the latter choice equatingci j with
its asymptotic value. These long-range tails are handled a
lytically throughout the calculation. The terms in Eq.~2.4!
involving v i(z) and the asymptotic part ofci j , 2bui j

el , have
to be evaluated together to yield the finite result@12#

2bv ion~z1!22pE r dr dz2 r ion~z2!

3buion ion
el @Ar 21~z12z2!2#

5
b qion

2 e e0
Fs dwall1qionE dz2uz12z2ur ion~z2!G . ~2.5!

We carefully checked to ensure that our results are indep
dent of the number of layers, grid points, andr max.
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We now briefly summarize how the perpendicular co
ponent of the pressure tensor~i.e., the pressure between th
walls! is calculated. Carnie and Chan@18# have derived con-
tact theorems for a number of model electrolytes. For
case, the contact theorem takes the well-known form

Pslit5kBT (
i 5hs,ion

r i~zmax,i !2
s2

2 e e0
, ~2.6!

which depends on the particle densities at the plane of c
tact. The net pressure felt between the plates,Pnet, is given
by the difference between the internal pressure,Pslit , and the
outside bulk pressure,Pbulk5 limdwall→`Pslit , such that

Pnet5Pslit2Pbulk . ~2.7!

We use wall separations of;9dhs or larger to determine
Pbulk with sufficient accuracy.

Kjellander and Marcˇelja @11,13# have suggested that in
stead of direct application of Eq.~2.6!, it is desirable to
transform to an equation for the midplane with the help
the Born-Green-Yvon equation. In this way the wall-wa
interaction can be split into a term,Pkin , which depends on
the midplane particle densities, and additional parts that
resent pressure components due to the Coulombic and h
core interactions (Pel and Pcore, respectively! between the
two fluid halves across the midplane. One has

Pslit5Pkin1Pel1Pcore

5kBT (
i 5hs,ion

r i~0!2E
0

zmax,ion
dz1 r ion~z1!E

2zmax,ion

0

3dz2 r ion~z2!E
0

`

2p r dr
]uion ion

el ~r ,z1 ,z2!

]z1

3hion ion~r ,z1 ,z2!

1kBT (
i , j 5hs,ion

2pE
0

zmax,i
dz1 r i~z1!E

2zmax,j

0

dz2 r j~z2!

3~z12z2! gi j ~ r̃ i j ,z1 ,z2!. ~2.8!

The integrations overz1 andz2 in the last term of Eq.~2.8!
are to be carried out only ifr̃ i j

2 5 1
4 (di1dj )

22(z12z2)2 is
positive. Both Eqs.~2.6! and ~2.8! are exact but might yield
slightly different results when applied in numerical calcu
tions because the correlation functions are only known
proximately@15#. For numerical and conceptual reasons,
use Eq.~2.8! in our calculations and will especially look a
the contributionPel when comparing systems with and with
out neutral hard-sphere solvent.

III. RESULTS

In the following discussion we refer to results for mode
of four types. These include the primitive model where on
counterions are present between the walls, hard-sphere
tems~HS! where only hard spheres occupy the slit betwe
uncharged walls, and mixtures of counterions and h
spheres~labeled PM1HS! of particular interest here. In ad
dition, we consider systems which are equivalent to PM1HS
-
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models except thatall charges are switched off while keep
ing the number of ‘‘ions’’ between the plates fixed. We lab
systems of this type UCPM1HS ~UC for ‘‘uncharged’’! and
they prove very useful in our attempt to obtain and und
stand different superposition approximations for the fo
between the plates.

In all calculations the relevant state and interaction
rameters were chosen to be consistent withdhs52.8 Å, e
578.7, and a temperatureT5298 K. Thus, the hard-spher
solvent particles are roughly the size of water molecules
the background dielectric continuum has the dielectric c
stant of pure water at 298 K. The walls are taken to have
same dielectric constant as the solution which circumve
the need for treating image charge effects. In fact, for the
it has been shown@11# that image effects are not very im
portant for the high surface charge density (20.267 C/m2

51e/60 Å2) considered here. We consider divalent coun
rions (qion52e) with diametersdion5dhs anddion54.25 Å
51.52dhs. The latter value is frequently used in PM calc
lations and is sometimes considered to represent an ‘‘ef
tive’’ ion diameter which includes some portion of a strong
bound solvation shell. Here we have selected this value s
ply because it allows us to check our PM results aga
earlier work, and it suffices to show the large effects wh
occur when the ions and solvent particles differ significan
in size.

The results reported are forrhs
bulk5 limdwall→`rhs(0)

50.492/dhs
3 . To achieve this value we usedahs5ghs

bulkrhs
bulk

with an activity coefficientghs
bulk557.1. This activity coeffi-

cient differs from the corresponding ‘‘exact’’~i.e., Carnahan-
Starling! value of 40.9 due to approximations inherent in t
HNC closure. We note that our bulk density is a little low
than that of water under ambient conditions~i.e., ;0.7/dhs).
However, the numerical solutions are dramatically easie
the lower density and the system considered is sufficie
dense to illustrate the large influence of solvent granula
which is of primary interest here. Furthermore, fluids of ha
spheres are considerably more structured than wate
models at the same density, so using a somewhat lower
sity offsets the ‘‘overstructuring’’ to some extent.

The presentation of the results is divided into two par
and we first consider the simpler case where the solvent
ticles and ions are of the same size.

A. Equal-sized particles

In Fig. 2 we give two examples of the density profiles
hard spheres and ions in the mixture~PM1HS! and com-
pared with the profiles for ions~PM! and hard spheres~HS!
alone. Note thatr i(z) is symmetrical around the midplan
and only one-half of the profiles are shown. The most ob
ous feature is the tendency of the ions to be found close
the wall when the dense hard-sphere fluid is present du
entropic effects as the free space between the walls is
duced. The presence of the ions at the wall lowers the con
density of the neutral component in the mixture in compa
son to the pure hard-sphere system, whereas the den
around the midplane are similar in magnitude. The profile
dwall53.1dhs plotted in Fig. 2~b! shows the appearance o
maxima and minima typical of dense hard-core systems
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dicating the buildup of particle layers. It should be noted t
with the hard-sphere bulk density used here we do not
any significant layering of the ions in contrast to the situat
for rhs

bulk50.7/dhs
3 @7,8#.

An interesting point is that the total average particle d
sity between the plates,r̄ tot ~calculated by integrating up th
density profiles of all particles for a given model!, is higher
for PM1HS than for HS. This fact, which is true for all wa
separations, is not due to the structural changes becau
the charges present. A comparison between the charged
uncharged mixtures reveals thatr̄ tot@PM1HS# and
r̄ tot@UCPM1HS# are always within 0.5% of each othe
whereasr̄ tot@HS# is up to 5% lower than the values for th
binary mixtures. This indicates that the model UCPM1HS is
not equivalent to HS even though all the species have id
tical interactions. The difference inr̄ tot for the pure and the
mixed systems is rooted in the distinction between partic
with a fixed chemical potential and particles that are loca
by definition~due to the electroneutrality condition! between
the walls. The latter species may be viewed as part of
wall-wall system and their chemical potential is genera
different from the former species even if their interactio
are identical.

A more complete discussion of the trends in the den
profiles is possible if we look at the contact and midpla
densities as functions ofdwall for the different models. The
contact densities~Fig. 3! for all components in the dens
systems~all except the PM! show to some degree maxim
~around dwall52.05dhs,3.1dhs) and minima ~around dwall
51.6dhs,2.6dhs). These are related to fluid structures that a
more ‘‘efficiently packed,’’ as in Fig. 2~b!, or more ‘‘loosely
packed,’’ as in Fig. 2~a!, respectively. At wall separation
slightly larger than a multiple ofdhs neighboring particle
layers interact more strongly and particles in the cont
layer are pushed towards the wall@16#. As hard-core

FIG. 2. Density profiles for the mixture of ions and hard sphe
~PM1HS!, the primitive model~PM!, and the hard-sphere mode
~HS!. In all casesdion5dhs. In ~a! dwall52.6dhs and in ~b! dwall

53.1dhs.
t
d
n
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of
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s
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e
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e
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interactions in the PM are of no importance the correspo
ing curve is not structured, but has one broad minimum
dwall'2.15dhs due to correlated ion-ion density fluctuation
The midplane densities~Fig. 4! exhibit layering features
similar to those of the contact values.

For dwall&2.2dhs, the densities at the midplane and co
tact plane for PM1HS and UCPM1HS are very similar.
This demonstrates that charge effects at these small
separations are only of secondary importance compared
packing constraints. Features such as higher ion contact

s
FIG. 3. Contact densities at the wall for~a! hard-sphere and~b!

ion components for different models. The model label
UCPM1HS is identical to PM1HS but the charges are switche
off as described in the text. The remaining models are as in Fig
In all casesdion5dhs.

FIG. 4. Densities at the midplane for~a! hard-sphere and~b! ion
components for different models. The models are as in Fig. 3. In
casesdion5dhs.
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4420 PRE 60FRANK OTTO AND G. N. PATEY
sities and a faster decrease of the ion midplane density
increasingdwall for the PM1HS compared to the PM com
about because of the hard-core interactions. For larger
separations the curves for the charged and uncharged
tures deviate significantly. The ‘‘ions’’ in the UCPM1HS
spread more evenly over the accessible space and their
tact density falls slowly to zero asdwall increases, whereas
constant nonzero contact density is reached for the PM1HS
@see Fig. 3~b!#.

The solution of the integral equations also yields the p
ticle distribution functionsgi j . These functions depend o
three coordinates and are therefore hard to depict, espec
if small differences between models are to be shown. H
~Fig. 5!, we present only a plot ofgion ion(r ) parallel to the
wall at the contact plane and midplane fordwall52.05dhs.
The differences between thegion ion(r ) for the PM and the
mixture are rather small~i.e., ,0.1). This means that, al
though the average positioning of the ions between the pl
~as indicated by the density profiles! changes considerabl
upon insertion of the hard spheres, the ion-ion structure
the fluid is not disturbed very much. The presence of
hard-sphere solvent induces small undulations with a ‘‘wa
length’’ slightly smaller than the solvent diameter, similar
the effects produced by a more realistic solvent mode
bulk solution@3#. For the PM midplane function, the sing
maximum atr 52.7dhs, which constitutes the global max
mum as well@as seen in a full two-dimensional contour plo#,
is split into two maxima in the mixture. The oscillations
gion ion(r ) in the contact plane are smaller and no maxim
exists; the global maximum~and the most probable spot fo
the next ion! can be found at the opposite wall.

We now discuss the pressure perpendicular to the w
Because of the contact theorem@Eq. ~2.6!#, most of the
points raised in our discussion of the behavior of the con
densities hold for the pressure as well. Figure 6~a! shows the
oscillating pressure for the pure hard-sphere system toge
with the smooth, slightly attractive curve for the PM and t
electrostatic component,Pel , calculated via Eq.~2.8!. Pel is
always attractive and arises because of correlated ion
fluctuations across the midplane~i.e., it is zero for Poisson-
Boltzmann-like theories which ignore these correlation!.
The net pressure for the system of interest, PM1HS, to-
gether with results given by two superposition approxim
tions, is plotted in Fig. 6~b!. If one wishes to estimatePnet for
PM1HS with simple addition schemes involving more ba

FIG. 5. gion ion(r ) parallel to the walls in the midplane and co
tact plane for the PM and PM1HS (dion5dhs) with dwall

52.05dhs.
th
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components, different possibilities are available. The s
plest suggestion is to add the values ofPnet for the pure
systems~i.e., Pnet@HS#1Pnet@PM#). From Fig. 6~b!, we see
that for the equal-sized case this gives good agreement d
to dwall'1.8dhs.

For small wall separations another procedure yields m
better values, specifically, the superposition
Pnet@UCPM1HS# and Pel@PM#. The idea leading to this
choice is that for small wall separations packing effects
crucial for the fluid structure and should be separated fr
the electrostatic contribution.Pel , on the other hand, show
rather small changes when comparing ion models with
without hard spheres~as is evident from Fig. 7! despite sig-
nificant differences in the density profiles. However, this s
perposition scheme breaks down at larger wall separation
the ‘‘ions’’ in UCPM1HS do not stay close to the walls~as
do those in PM1HS! and the pressure is systematically ove
estimated.

A couple of remarks are appropriate here. First, the co
parisons made in the preceding paragraphs are of rather

FIG. 6. The net pressure acting between the plates obtained
the different models and with different superposition approxim
tions. In all casesdion5dhs. The labels are as in Fig. 3 and a
discussed in the text.

FIG. 7. The electrostatic component of the pressure for the
and PM1HS. Results fordion5dhs and fordion51.52dhs are shown.
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PRE 60 4421FORCES BETWEEN LIKE-CHARGED PLATES IN . . .
demic interest as we do not suggest that any procedur
adding pressure components of different models will yi
exactlyPnet@PM1HS#. Further, because of the restriction
equal-sized particles, most schemes of combining the o
lating pressure found for the hard-sphere fluid with a sli
attraction of electrostatic origin will likely give a fair quali
tative picture. The case where the ions and solvent parti
are of unequal size considered in the following subsectio
much more interesting. Secondly, note thatPnet@HS# and
Pnet@UCPM1HS# are not the same although the ‘‘ions’’ an
hard spheres are identical in UCPM1HS. This is due to the
above-mentioned peculiarity of the present model, where
bulk is treated as a pure fluid with the mixture existing on
in the cavity between the walls.

B. Larger ions

A set of calculations analogous to those described ab
have been performed for systems with identical diameters
the neutral hard-sphere component, but with ions which
50% larger, or, more precisely,dion54.25 Å51.52dhs.
With this choice, the ions are considerably larger than
solvent particles and deviations from the equal-sized case
expected to be significant. Moreover, this value ofdion is
often used in studies of the PM and results for the pure
system have been published@2#. We note that for both ion
sizes considered here the PM yields essentially identica
sults~with the appropriate redefinition ofdwall); the divalent
counterions stay sufficiently apart from each other that i
ion hard-core interactions are not important. See, for
ample, thePel plots given in Fig. 7. For larger values ofdion
and especially for monovalent ions@2# density profiles and
pressure curves depend more strongly on the ion diame

A qualitative comparison of Figs. 8 and 2 indicates th
with the different particle sizes the density profiles diff
more significantly from those of the pure systems. T
comes about because an ‘‘in phase’’ layering of ions a

FIG. 8. Density profiles for the mixture of ions and hard sphe
~PM1HS!, the primitive model~PM!, and the hard-sphere mode
~HS!. In all casesdion51.52dhs. In ~a! dwall52.5dhs and in ~b!
dwall52.9dhs.
of
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hard-sphere solvent particles is no longer possible. The
commensurate diameters appear to bring on an even m
pronounced tendency to push the ions towards the walls.
plot of the contact densities given in Fig. 9 confirms th
observation; the ion contact densities are higher and thos
the neutral species lower compared to the mixture with p
ticles of the same size~Fig. 3!. Another point of interest is
that the first maximum of the ion contact density in the m
ture ~PM1HS! is at dwall'2.5dhs5dhs1dion , which means
that ions are pushed closer to one wall by hard spheres
sociated with the contact layer at the opposite wall. The p
hard-sphere fluid~HS! has its first maximum slightly highe
than dwall52dhs @Fig. 9~a!#. Since hard spheres in PM1HS
and UCPM1HS are affected by the interactions with bo
species at the opposite wall we find two maxima at the c
responding wall separations for these mixtures.

This more complex behavior can also be found for t
pressure between the walls shown in Fig. 10. The distan
between maxima and minima inPnet for PM1HS are irregu-
lar and no correlation with the oscillations characteristic
the HS model is apparent. The curves shown in Fig. 10~b!
also demonstrate that the simple addition approximat
Pnet@PM1HS#'Pnet@HS#1Pnet@PM# is not good at any
wall separation if the particle diameters are sufficiently d
ferent. On the other hand, the more complicated sche
Pnet@PM1HS#'Pnet@UCPM1HS#1Pel@PM#, works very
well for smaller values ofdwall . Deviations do occur at large
wall-wall separations where the fluid structure
UCPM1HS differs significantly from that of PM1HS. Nev-
ertheless, these results show that to a good approximation
net pressure in the PM1HS can be viewed as a superpositio
of an attractive electrostatic part and a ‘‘quasioscillator
component arising from the hard-core interactions in the s
tem.

IV. SUMMARY AND CONCLUSIONS

We have solved the anisotropic HNC approximation
mixtures of neutral hard spheres and divalent counteri

s
FIG. 9. Contact densities at the wall for~a! hard-sphere and~b!

ion components for different models. The models are as in Fig. 3
all casesdion51.52dhs.
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between charged hard walls. In agreement with earlier ca
lations@8,10#, we observe that adding a neutral solvent to
PM modifies the ion density profiles considerably. The ha
core ion-solvent interactions tend to push the ions towa
the wall, resulting in higher ion densities at contact. T
effect is amplified if the ions are larger than the solvent p
ticles.

We find that, even at moderate solvent density and h
surface charge density, the net pressure between the wa
separations of a few solvent diameters tends to be lar
dominated by oscillations associated with the hard-core
teractions. At these separations electrostatic effects are

FIG. 10. The net pressure acting between the plates obtaine
the different models and with different superposition approxim
tions. In all casesdion51.52dhs. The labels are as in Fig. 3 and a
discussed in the text.
J.
u-
e
-
s

-

h
at

ly
-
ly

of secondary importance in these models. For the restric
case where the ions and solvent particles are of the same
the oscillations are regular and similar to those for a p
hard-sphere fluid. For this system, simply adding the PM a
hard-sphere pressures gives a reasonable approximatio
the forces found for the mixture. If the ions and solve
particles are significantly different in size, one obtains
more complex pressure curve which cannot be approxima
by simply adding the PM and hard-sphere pressures. H
ever, for wall separations up to several solvent diameters
net pressure can still be well described by a better supe
sition approximation. This consists of adding the net press
for a corresponding uncharged hard-sphere mixture to
purely electrostatic component,Pel , of the PM. This scheme
works because the hard-core interactions remain the m
important contribution and thePel component in the mixture
differs little from that of the PM.

In conclusion, this work along with earlier studie
strongly suggests that in real solutions, solvent effects
included in the PM are likely more important than the ion
interactions in determining the force between charged pla
at separations of a few solvent~or ion! diameters. Further-
more, we have shown that simple superposition of ionic a
solvent pressures only works if the ions and solvent partic
are of similar size. A more accurate superposition sche
can be devised but, although it provides physical insight i
the nature of the forces involved, its application is not p
ticularly practical. We are currently investigating solvent e
fects which arise from reduced dielectric screening as
cussed in the Introduction. Our preliminary work indicat
that these too can have significant consequences for the f
acting between charged plates.
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